ESTUDO HIDROSSEDIMENTOLÓGICO DO LAGO GUAÍBA CONTRATO Nº 22/2018

PRODUTO 06 - ESTRUTURA DE TODOS OS MODELOS DESENVOLVIDOS, JUNTAMENTE COM OS RESPECTIVOS DADOS DE ENTRADA ORGANIZADOS <u>E MANUAIS DESCRITIVOS</u>

REALIZAÇÃO:

GOVERNO DO ESTADO RIO GRANDE DO SUL SECRETARIA DO MEIO AMBIENTE

E INFRAESTRUTURA

EXECUÇÃO:

RECURSOS HÍDRICOS E AMBIENTAIS ENGENHARIA

> CURITIBA - PR OUTUBRO/2019

ESTUDO HIDROSSEDIMENTOLÓGICO DO LAGO GUAÍBA CONTRATO Nº 22/2018

Emissã	Emissão Inicial						
Rev.	Data	Elaborado por	Verificado por	Autorizado por	CREA Responsável Técnico	CE	
1	10/10/2019	HOF; RBR; TM	АР	CSG	67059-D	AE	
0	23/08/2019	HOF; RBR	AP	CSG	67059-D	VS	
CE – Códigos de emissão							
AE Ap	rovado para emissão	o AF Aprovação	final VS Versão	o preliminar CD	Cancelado		

GOVERNO DO ESTADO DO RIO GRANDE DO SUL SECRETARIA DE MEIO AMBIENTE E INFRAESTRUTURA (SEMA/RS)

Av. Borges de Medeiros, nº 261, 14º andar Centro Histórico, Porto Alegre – RS – Brasil

Secretário de Estado do Ambiente e Desenvolvimento Sustentável Artur Lemos Júnior

Fiscal titular de acompanhamento e execução do contrato Amanda Wajnberg Fadel

Fiscal suplente de acompanhamento e execução do contrato Fernando Comerlato Scottá

RHA ENGENHARIA E CONSULTORIA SS LTDA

Rua Voluntários da Pátria, 400 – 14° andar CEP 80020-000 - Centro - Curitiba - PR - Brasil Tel./Fax +55 41 3232 0732 - www.rhaengenharia.com.br

REPRESENTANTE LEGAL

Candice Schauffert Garcia Engenheira Civil Mestre em Engenharia de Recursos Hídricos e Ambiental csgarcia@rhaengenharia.com.br

EQUIPE PERMANENTE

Coordenadora Geral, Técnico e Administrativo Eng.ª Civil, M.Sc., Candice Schauffert Garcia Engenheiro de Recursos Hídricos 1 Eng.º Civil, M.Sc., Laertes Munhoz da Cunha Engenheiro de Recursos Hídricos 2 Eng.ª Civil, M.Sc., Márian da Costa Rohn Coordenadora Executiva Eng.ª Ambiental, Esp., Andréia Pedroso Técnica em Sistemas de Informações Geográficas Geógrafa Karine Krunn Auxiliar Administrativo Veridiana Dias da Cruz

EQUIPE COMPLEMENTAR

Físico, Dr., José Eduardo Gonçalves Oceanógrafa, M.Sc., Tábata Fernanda Vilas Boas de Miranda Engenheiro Ambiental, M.Sc., Hugo de Oliveira Fagundes Engenheira Ambiental, Renata Barão Rossoni Estagiária em Geografia Thais Regina Paes

DADOS CONTRATUAIS

Contrato nº 22/2018 de 17 de setembro de 2018.

Número do processo administrativo eletrônico: 18/0500-0000570-8.

Ordem de Início dos Serviços nº CT-0290 de 13/11/2017.

Partes: Estado do Rio Grande do Sul, por intermédio da Ambiente e Desenvolvimento Sustentável, e RHA Engenharia e Consultoria SS Ltda.

Objeto: Contratação de serviços de empresa especializada para prestação de serviços de Estudo Hidrossedimentológico do Lago Guaíba.

Vigência: 06 meses a partir da data definida na Ordem de Início dos Serviços (com aditamento de prazo de 06 meses).

LISTA DE FIGURAS

FIGURA 1. PASTAS DE TRABALHO	8
IGURA 2. ESTRUTURA DO ARQUIVO DE TEXTURAS DO SOLO	10
IGURA 3. ESTRUTURA DO ARQUIVO DE USO E MANEJO DO SOLO	11
IGURA 4. ESTRUTURA DE PASTAS E ARQUIVOS PARA SIMULAÇÃO COM O MOI	DELO
MGB-SED	11
IGURA 5. ESTRUTURA DO ARQUIVO PARHIGSED.HIG – PARTE 1	12
IGURA 6. ESTRUTURA DO ARQUIVO PARHIGSED.HIG – PARTE 2	13
IGURA 7. ESTRUTURA DO ARQUIVO PARHIGSED.HIG - PARTE 1	14
IGURA 8. DIRETÓRIOS SIMULAÇÕES DELFT3D	15
FIGURA 9. DIRETÓRIO GERAL PARA UTILIZAÇÃO DO MODELO HIDRODINÂ	MICO
DELFT3D	16
IGURA 10. TELA PRINCIPAL DELFT3D	18
IGURA 11. TELA GRID	18
IGURA 12. TELA PRINCIPAL MÓDULO FLOW – DELFT3D	19
FIGURA 13. TELA INICIAL ARQUIVO DE SIMULAÇÃO (.mdf)	21
IGURA 14. TELA <i>DOMAIN</i>	21
FIGURA 15. TELA PROCESSES	22
FIGURA 16. TELA PHYSICAL PARAMETERS	22
FIGURA 17. TELA DO ARQUIVO DE SIMULAÇÃO CAMPOS DE ONDAS	23
FIGURA 18. TELA QUICKPLOT	24
IGURA 19. TELA QUICKPLOT COM ARQUIVO DE SAÍDA	24
IGURA 20. EXEMPLO DE VARIÁVEIS DE SAÍDA DISPONÍVEIS	25

SUMÁRIO

1	IN	TRODUÇÃO	7
2	M	ODELO HIDROSSEDIMENTOLÓGICO MGB	8
	2.1 2.2 2.3 2.4	APRESENTAÇÃO DAS PASTAS PRÉ-PROCESSAMENTO ARQUIVOS DE TEXTURA, USO E MANEJO DO SOLO SIMULAÇÃO	8 9 10 11
3	3.1 3.2 3.3 3.4	APRESENTAÇÃO DAS PASTAS IMPLEMENTAÇÃO DO MODELO SIMULAÇÕES ESTRUTURA DOS ARQUIVOS DE SAÍDAS	15 15 17 19 23

1 INTRODUÇÃO

Este manual visa a aplicação dos modelos MGB-SED e Delft3D para o Região Hidrográfica do Lago Guaíba, de forma resumida.

A primeira parte de aplicação do modelo MGB-SED, referente à modelagem hidrológica, é apresentada no "Manual de exemplo de aplicação do modelo MGB 2018 utilizando o IPH-Hydro Tools", que se encontra na pasta "Referências importantes" ou pode ser encontrado no endereço eletrônico <u>https://www.ufrgs.br/hge/author/hge/</u>. Na etapa de pré-processamento são utilizadas informações já utilizadas na etapa de pré-processamento do modelo hidrológico, como o arquivo de minibacias, do Modelo Digital de Elevação (MDE), do mapa de Unidades de Resposta Hidrológica (URH), arquivo de direção de fluxos e a rede de drenagem, para gerarem informações de entrada do modelo MGB-SED. Após se obter os dados de saída da etapa de pré-processamento, incia-se a etapa de preparação dos arquivos com a textura do solo para cálculo do parâmetro de erodibilidade e os valores do fator de cobertura e manejo do solo da Equação Universal de Perda de Solos Modificada, conhecida como MUSLE. Por fim, é feita a simulação hidrossedimentológica.

Com relação ao modelo hidrodinâmico Delft3D, a primeira etapa consiste na implentação do modelo, em que são utilizadas informações sobre a delimitação área de interesse, dados batimétricos e dados de rugosidade. A segunda etapa consiste na elaboração do arquivo responsável pela simulação (.mdf), no qual são inseridos informações sobre o período de simulação, grade e batimetria interpolada, as condições de contorno, pontos de observação, pontos secos dentro da grade e processos adicionais como a ação de ondas e de processos antrópicos (ex.: mineração). Informações detalhadas das etapas de aplicação do Delft3D podem ser encontradas em https://oss.deltares.nl/documents/183920/185723/Delft3D-FLOW_User_Manual.pdf .

2 MODELO HIDROSSEDIMENTOLÓGICO MGB

2.1 APRESENTAÇÃO DAS PASTAS

Antes de iniciar a execução das etapas de processamento do modelo, é necessário conhecer as pastas que poderão ser utilizadas e os arquivos que as contém. Estas pastas são apresentadas na FIGURA 1 e contém todos os dados utilizados durante as simulações, fornecendo mais informações que simplesmente aquelas necessárias para a simulação do modelo, pois já contém resultados nas pastas *output*.

FIGURA 1. PASTAS DE TRABALHO

Na sequência são apresentados os nomes e conteúdos das pastas.

- Atual nesta pasta estão presentes as entradas e saídas do modelo MGB-SED para o cenário atual de simulação que vai desde 1975-2015.
- **Cenários** são apresentados os dados de entrada e os principais dados de saída para os 9 cenários simulados de mudanças de uso do solo combinados com os cenários de mudanças climáticas para o período de 2006 a 2035.
- **Códigos** contém os códigos fontes do pré-processador (PRE-SED) e do modelo (MGB-SED) na linguagem FORTRAN.
- **Conversor** contém um arquivo em formato .xlsx para compatibilizar os dados de saída do PRE-SED com dados de entrada do MGB-SED.
- **Dados observados** contém todos os dados observados utilizados como entrada no modelo ou como dados para comparação com as saídas do modelo. Estão presentes na pasta os dados de chuva, vazão, descarga sólida em suspensão e total para os períodos de calibração (1975-2005), validação (2006-2015) e total (1975-2015).
- Executáveis estão presentes os executáveis do PRE-SED e do MGB-SED.
- **Pre_Pro_MGB-inputs** nesta pasta estão os arquivos necessários para gerar o arquivo MINI.gtp (Cell.hig), que é o principal produto da etapa de pré-processamento do modelo hidrológico. Também está contido o shape de minibacias que contém as informações dos centroides e número de identificação cada uma.

- **PRE-SED_inputs** estão os dados necessários para execução do pré-processamento do modelo de sedimentos.
- **Referências Importantes** contém o manual de aplicação do modelo MGB, bem como trabalhos acadêmicos realizados na região de estudo que utilizaram os modelos MGB e MGB-SED.
- Leia-me.txt este arquivo apresenta informações importantes para compatibilizar os nomes dos arquivos lidos pelo modelo MGB e com o MGB-SED.

2.2 PRÉ-PROCESSAMENTO

O pré-processamento só será necessário de ser realizado caso ocorram mudanças nos dados de entrada que venham do pré-processamento do modelo hidrológico.

A etapa de pré-processamento requer a utilização de cinco arquivos de entrada para gerar três arquivos de saída. Os arquivos de entrada são:

- **AREA_ACU.txt** este arquivo contém informações das áreas acumuladas a montante de um pixel. Ele pode ser criado ou apenas lido (como neste caso) na etapa de pré-processamento
- BLOCO.txt arquivo com informações das URH
- **DIR.txt** arquivo de direção de fluxo
- MINI.txt arquivo de minibacias
- MNT.txt arquivo do modelo digital de elevação
- **REDE.txt** arquivo da rede de drenagem não segmentada

Os nomes dos arquivos e suas extensões sempre devem ser respeitados. Na etapa de préprocessamento do modelo hidrológico a maioria desses dados já existiam, porém com outros nomes (ver a pasta Pre_Pro_MGB-inputs). Além disso, destaca-se que na pasta PRE-SED_inputs existem quatro arquivos com informações das URH, sendo: BLOCO.txt, o arquivo usado para a simulação atual; e BLOCODesm.txt, BLOCORef.txt e BLOCOTend.txt, os arquivos utilizados para simular os cenários futuros de mudança de uso e ocupação do solo nas condições de maior desflorestamento, florestamento e tendencial, respectivamente.

Para executar o pré-processamento, basta criar uma nova pasta chamada PRE-SED e dentro dela duas sub-pastas denominadas *input* e *output*. Dentro da pasta *input*, coloque os seis arquivos de entrada listados acima. Após isso, coloque também dentro da pasta PRE-SED o executável PRE-SED.exe, que está dentro da pasta "Executáveis". Feito isso, basta executar o PRE-SED.exe e pressionar: "enter", "1", "0", "1" e "enter".

Ao finalizar o pré-processamento, na pasta *output* estarão os três arquivos de saída: SED_HRU.txt, SED_LSm.txt e SED_SDR. Esses arquivos deverão ser convertidos utilizando o arquivo e as instruções que se encontram dentro da pasta "Conversor". Posteriormente devem ser adicionados à pasta input que se encontra dentro da pasta "Atual", se o interesse for simular o cenário atual, ou das

pastas dos cenários que se encontram dentro da pasta "Cenários", se o interesse for simular os cenários futuros de mudanças climáticas.

2.3 ARQUIVOS DE TEXTURA, USO E MANEJO DO SOLO

Os arquivos de textura ou de uso e manejo do solo só deverão ser modificados se houver informações melhores e mais precisas que possam ser agregadas à modelagem.

O arquivo de textura (PARTEXT_MUSLE.txt) e uso e manejo (PARUSO_MUSLE.txt) do solo se encontram dentro da subpasta *input* que pode estar dentro da pasta "Atual" ou das pastas dos cenários dentro da pasta "Cenários". A estrutura desses arquivos é apresentada na FIGURA 2 e FIGURA 3. A primeira coluna desses arquivos, chamada de "uso", diz respeito às URH definidas na etapa de préprocessamento do modelo hidrológico.

Para cada URH está associada uma informação, seja um percentual de textura do solo (FIGURA 2) ou os valores dos fatores K, C, P, Fgros ou Ksdr da MUSLE. O valor de –1 do fator K indica que esse fator será calculado dentro do modelo. Mais detalhes sobre esses parâmetros e suas formas de cálculo podem ser encontrados no trabalho de Buarque (2015). Para alterar os valores desses parâmetros, basta editar os arquivos de texto respeitando os espaçamentos.

Bacia l					
uso	Areia %	Silte %	Argila %	orgC %	Rocha %
Flor_SR	12.000	29.500	58.500	1.200	0.000
Flor_SP	08.700	28.600	62.700	2.000	0.000
Agric_SR	18.000	27.000	55.000	1.800	0.000
Agric_SP	14.000	28.500	57.500	2.000	0.000
Campo_SR	21.500	25.000	53.500	1.000	0.000
Campo_SP	15.800	28.400	55.800	0.800	0.000
VF_inund	16.300	29.000	54.700	2.000	0.000
Semi_imp	22.000	25.000	53.000	1.800	0.000
Agua	0.000	0.000	0.000	0.000	0.000
Bacia 2					
Bacia 2 uso	Areia %	Silte %	Argila %	orgC %	Rocha %
Bacia 2 uso Flor_SR	Areia % 40.500	Silte % 14.500	Argila % 45.000	orgC % 2.500	Rocha % 0.000
Bacia 2 uso Flor_SR Flor_SP	Areia % 40.500 42.400	Silte % 14.500 12.600	Argila % 45.000 45.000	orgC % 2.500 2.500	Rocha % 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR	Areia % 40.500 42.400 48.000	Silte % 14.500 12.600 12.000	Argila % 45.000 45.000 40.000	orgC % 2.500 2.500 1.400	Rocha % 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP	Areia % 40.500 42.400 48.000 50.900	Silte % 14.500 12.600 12.000 10.500	Argila % 45.000 45.000 40.000 38.600	orgC % 2.500 2.500 1.400 1.000	Rocha % 0.000 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP Campo_SR	Areia % 40.500 42.400 48.000 50.900 41.000	Silte % 14.500 12.600 12.000 10.500 14.000	Argila % 45.000 45.000 40.000 38.600 45.000	orgC % 2.500 2.500 1.400 1.000 0.800	Rocha % 0.000 0.000 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP Campo_SR Campo_SP	Areia % 40.500 42.400 48.000 50.900 41.000 51.900	Silte % 14.500 12.600 12.000 10.500 14.000 11.600	Argila % 45.000 45.000 38.600 45.000 36.500	orgC % 2.500 2.500 1.400 1.000 0.800 0.700	Rocha % 0.000 0.000 0.000 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP Campo_SR Campo_SP VF_inund	Areia % 40.500 42.400 48.000 50.900 41.000 51.900 44.000	Silte % 14.500 12.600 12.000 10.500 14.000 11.600 18.000	Argila % 45.000 40.000 38.600 45.000 36.500 38.000	orgC % 2.500 2.500 1.400 1.000 0.800 0.700 3.000	Rocha % 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP Campo_SR Campo_SP VF_inund Semi_imp	Areia % 40.500 42.400 48.000 50.900 41.000 51.900 44.000 48.000	Silte % 14.500 12.600 12.000 10.500 14.000 11.600 18.000 22.000	Argila % 45.000 40.000 38.600 45.000 36.500 38.000 30.000	orgC % 2.500 2.500 1.400 1.000 0.800 0.700 3.000 0.800	Rocha % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bacia 2 uso Flor_SR Flor_SP Agric_SR Agric_SP Campo_SR Campo_SP VF_inund Semi_imp Agua	Areia % 40.500 42.400 48.000 50.900 41.000 51.900 44.000 48.000 0.000	Silte % 14.500 12.600 12.000 10.500 14.000 11.600 18.000 22.000 0.000	Argila % 45.000 40.000 38.600 45.000 36.500 38.000 30.000 0.000	orgC % 2.500 1.400 1.000 0.800 0.700 3.000 0.800 0.800 0.000	Rocha % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGURA 2. ESTRUTURA DO ARQUIVO DE TEXTURAS DO SOLO

Bacia l					
uso	K	С	P	Fgros	Ksdr
Flor_SR	-1.00000	0.17000	1.00000	-1.00000	1.00000
Flor_SP	-1.00000	0.22000	1.00000	-1.00000	1.00000
Agric_SR	-1.00000	0.34000	1.00000	-1.00000	1.00000
Agric_SP	-1.00000	0.38000	1.00000	-1.00000	1.00000
Campo_SR	-1.00000	0.27000	1.00000	-1.00000	1.00000
Campo_SP	-1.00000	0.45000	1.00000	-1.00000	1.00000
VF_inund	-1.00000	0.25000	1.00000	-1.00000	1.00000
Semi_imp	-1.00000	0.17000	1.00000	-1.00000	1.00000
Agua	0.00000	0.00000	0.00000	0.00000	0.00000
Bacia 2					
uso	K	С	P	Fgros	Ksdr
Flor_SR	-1.00000	0.01600	1.00000	-1.00000	1.00000
Flor_SP	-1.00000	0.01400	1.00000	-1.00000	1.00000
Agric_SR	-1.00000	0.04600	1.00000	-1.00000	1.00000
Agric_SP	-1.00000	0.04400	1.00000	-1.00000	1.00000
Campo_SR	-1.00000	0.05500	1.00000	-1.00000	1.00000
Campo_SP	-1.00000	0.13600	1.00000	-1.00000	1.00000
VF_inund	-1.00000	0.00140	1.00000	-1.00000	1.00000
Semi_imp	-1.00000	0.01000	1.00000	-1.00000	1.00000
Agua	0.00000	0.00000	0.00000	0.00000	0.00000

FIGURA 3. ESTRUTURA DO ARQUIVO DE USO E MANEJO DO SOLO

2.4 SIMULAÇÃO

Após a geração dos arquivos de entrada nas etapas de preparação dos dados e pré-processamento do modelo MGB e MGB-SED é possível, finalmente, executar a simulação para o período de interesse. A simulação só pode ser executada se existirem as subpastas *input* e *output* e o executável MGB-SED_Guaiba.exe dentro de uma outra pasta. Por exemplo, se quiséssemos simular o período atual (1975-2015), basta colocar o executável dentro da pasta "Atual", conforme mostra a FIGURA 4.

FIGURA 4. ESTRUTURA DE PASTAS E ARQUIVOS PARA SIMULAÇÃO COM O MODELO MGB-SED

📙 input	22/08/2019 13:09	Pasta de arquivos	
📙 output	22/08/2019 13:00	Pasta de arquivos	
MGB-SED_Guaiba.exe	22/08/2019 14:49	Aplicativo	1,640 KB

O mesmo deve ser feito para o caso de simulação dos cenários futuros. Dentro da pasta de cada cenário deve conter as subpastas *input* e *output* e o executável MGB-SED_Guaiba.exe. Destaca-se aqui que os arquivos localizados dentro da subpasta "inputs comuns", dentro da pasta "Cenários", devem ser colocados dentro da subpasta *input* para cada cenário de interesse a ser simulado. Isso significa que cada cenário possui arquivos de entradas específicos e que todos eles compartilham arquivos de entrada em comum. Além disso, menciona-se aqui que os cenários futuros requerem um número maior de arquivos de entrada do que o cenário atual, devido às especificidades de se considerar as mudanças climáticas. Esses arquivos já estão devidamente colocados em suas respectivas pastas.

Antes de iniciar o executável MGB-SED_Guaiba.exe é importante abrir o arquivo PARHIGSED.hig e conferir as informações contidas nele. Esse arquivo é muito semelhante com o arquivo infoMGB.sim, que é um produto da preparação dos dados para a simulação do modelo hidrológico, mas que possui algumas diferenças. A FIGURA 5 e FIGURA 6 apresentam a estrutura desse arquivo e as informações que devem ser contidas nele. Se elas não estiverem presentes, devem ser acrescentadas cuidadosamente, respeitando os espaçamentos, conforme os arquivos anexados a esse manual.

FIGURA 5. ESTRUTURA DO ARQUIVO PARHIGSED.HIG – PARTE 1

1	GENERAL INFORMATIONS	FILE FOR LARGE	SCALE HYDROLO	GIC MODEL	
2	Project Calibration_	75-15			
4		NTH VEND	HOUD	ISTMITATION STADT	
6	1 1	1975	0	STROLATION START	
7			TROUBLE AND TH	PRIVATE TH CROAME	
9	14975 86400.	ITTME IN	TERVALS AND IN	TERVALS SIZE IN SECONDS	
10					
11	NC NU 2627 9	NB 32	-38		
13					
14	ICALIB		INDICATES IF	IT IS GONNA BE USED AUTOMATIC	CALIBRATION (1) OR NOT (0)
15	U		YOR IF II WIL	L MARE THE FORECAST (2)	
17	FILENAME WITH DAILY	METEOROLOGICAL	DATA		
19	FILENAME WITH AVERA	GE MONTHLY METH	OROLOGICAL DAT	A	
20	medias.cli				
21	STATIONS WITH OBSER	VED FLOW DATA.	FILENAME WITH	DATA	
23	12 QOBS.txt				
24	ISTATIONS WITH OBSER	VED SEDIMENT D	TA FILENAME W	TH DATA	
26	1		,		
27	12 CSSObs.txt				
29	NUMBER OF UNIT CATC	HMENTS THAT CON	RESPONDS TO FL	J GAUGE WITH DATA	
30	2484 2440 2021 21	97 2575 2149	2261 2268 2	510 2294 2382 2232	
32	INUMBER OF UNIT CATC	HMENTS THAT CON	RESPONDS TO SE	D GAUGE WITH DATA	
33	2484 2440 2021 21	97 2575 2149	2261 2268 2	510 2294 2382 2232	
34	INUMBER OF POINTS TO	RECORD HYDROG	APHS		
36	22				
37	NUMBER OF POINTS TO	RECORD HYDROGI	APHS		
39	22				
40	CELLS THAT CORRESPO	NDS TO THOSE PO	DINTS		
42	2484				
43	2440				
45	2197				
46	2575				
47	2149 2261				
49	2268				
50	2510				
52	2348				
53	2382				
54	2232				
56	2572				
57	2435				
59	2209				
60	2594				
62	2475				
63	2398				
64	2484				
66	2440				

65	2494
66	2440
67	2021
68	2197
69	2575
70	2149
71	2261
72	2268
73	2510
74	2294
75	2348
76	2382
77	2232
78	2505
79	2572
80	2435
81	2352
82	2209
83	2596
84	2524
85	2475
86	2398
87	
88	INumber of cells where calculated flow must be substituted for the one read from file and filename
89	0 QSUBSI.gab
90	Talls which flow does will be subscienced
91	Cells which flow data will be substituted

FIGURA 6. ESTRUTURA DO ARQUIVO PARHIGSED.HIG – PARTE 2

As primeiras informações a serem observadas são o dia, mês e ano em que a simulação se inicia, que neste exemplo foi 1/1/1975. Isso deve estar coerente com os dados de chuva utilizados como forçante para o modelo. Na sequência, deve-se conferir o número de dias de simulação, que nesse caso foi de 14.975 dias, que não poderão ser superiores aos dias com dados de chuva. As demais informações são relativas à quantidade de postos observados de vazão e sedimentos nos arquivos de entrada e seus respectivos nomes, bem como o número de minibacias em que se desejam gravar os hidrogramas de descarga líquida e sólida.

As informações do arquivo PARHIGSED.hig podem ser alteradas de acordo com o interesse do usuário. Quando se optar por visualizar os resultados gerados pelo modelo em outras minibacias, podese identifica-las utilizando o arquivo *shapefile* "mini_guaiba", que se encontra dentro da pasta Pre_Pro_MGB-inputs. Por fim, ressalta-se que mesmo usando dados de descarga sólida, o nome do arquivo que contém esses dados observados deve ser CSSObs, para fins de compatibilidade com a leitura do arquivo pelo modelo MGB-SED.

Com todos os dados na pasta *input* e todas as informações acima mencionadas definidas corretamente, basta iniciar o executável MGB-SED_Guaiba.exe e aguardar o fim da simulação. Quando a simulação acabar, na pasta *output* poderão ser encontrados os seguintes arquivos:

- AJUSTE.HIG apresenta os valores das métricas Nash e Sutcliffe, coeficiente de correlação e BIAS para cada posto com dados observados de vazão
- AJUSTESED.HIG apresenta os valores das métricas Nash e Sutcliffe, coeficiente de correlação e BIAS para cada posto com dados observados de sedimentos

- **CONC_RIO_areia.txt** apresenta dados de concentração de areia para cada minibacia simulada
- **CONC_RIO_argila.txt** apresenta dados de concentração de argila para cada minibacia simulada
- CONC_RIO_silte.txt apresenta dados de concentração de silte para cada minibacia simulada
- **QSS.txt** apresenta dados de descarga sólida em suspensão para cada minibacia identificada no arquivo PARHIGSED.HIG
- **QST.txt** apresenta dados de descarga sólida total para cada minibacia identificada no arquivo PARHIGSED.HIG
- VAZAO.HIG apresenta dados de descarga líquida para cada minibacia identificada no arquivo PARHIGSED.HIG
- VAZAO_MINI.HIG apresenta dados de descarga líquida para cada minibacia simulada

Para os cenários futuros, a FIGURA 7 apresenta a estrutura geral de pastas contidas na pasta "Cenários". Os números de 01 a 09 representam cada cenário simulado, identificados no arquivo Descricao_Cebaruis.xlsx. Dentro de cada uma dessas pastas se encontram duas pastas, uma com os dados de entrada (*input*) e outras com as saídas do modelo (*output*), geradas da mesma forma que as saídas do modelo para o cenário atual, apresentada anteriormente. Apesar de ser possível gerar com o modelo os mesmos arquivos de saída do cenário atual, para os cenários futuros foram colocados nas pastas *output* apenas os principais resultados de interesse, que são os arquivos QSS.txt, QST.txt e VAZAO.HIG.

Nome	Data de modificaç	Тіро	Tamanho
01	23/08/2019 00:12	Pasta de arquivos	
02	23/08/2019 00:12	Pasta de arquivos	
03	23/08/2019 00:12	Pasta de arquivos	
04	23/08/2019 00:13	Pasta de arquivos	
05	23/08/2019 00:13	Pasta de arquivos	
06	23/08/2019 00:13	Pasta de arquivos	
07	23/08/2019 00:13	Pasta de arquivos	
08	23/08/2019 00:14	Pasta de arquivos	
09	23/08/2019 00:14	Pasta de arquivos	
inputs comuns	22/08/2019 13:22	Pasta de arquivos	
📧 Descricao_Cenarios.xlsx	05/07/2019 15:49	Planilha do Micro	10 KB
📔 Leia-me.txt	22/08/2019 13:24	Arquivo TXT	1 KB

FIGURA 7. ESTRUTURA DO ARQUIVO PARHIGSED.HIG - PARTE 1

3 MODELO HIDRODINÂMICO DELFT3D

3.1 APRESENTAÇÃO DAS PASTAS

A FIGURA 8 apresenta os diretórios de todas as simulações realizadas com o Delft3D. Dentro de cada diretório um conjunto de pastas e arquivos está organizado para a aplicação do modelo, em cada condição de contorno ou variação temporal imposta. O modelo dos dados utilizados durante as simulações são apresentados na FIGURA 9.

O diretório demonstrado refere-se ao Modelo Hidrodinâmico do Lago Guaíba (Módulo III), entretanto as mesmas pastas e instruções são aplicadas ao Modelo Hidrodinâmico do Baixo Jacuí (Módulo II), com exceção do arquivo de ondas, que não foi implentado para o Módulo II.

FIGURA 8. DIRETÓRIOS SIMULAÇÕES DELFT3D

Nome	Тіро
Batimetria	Pasta de arquivos
	Pasta de arquivos
	Pasta de arquivos
📙 Grade	Pasta de arquivos
📙 Linha de Costa	Pasta de arquivos
Pontos Secos	Pasta de arquivos
PontosObs	Pasta de arquivos
Resultados	Pasta de arquivos
📙 Rugosidade	Pasta de arquivos
	Pasta de arquivos
📄 Guaiba_Cjacui_250m_arambare.fil	Arquivo FIL
🗐 Guaiba_Cjacui_250m_arambare	Arquivo MDF
🧾 mineracao_guaiba	Arquivo DAD
🗐 mineracao_guaiba	Arquivo POL
🙀 ondas	Microsoft Access

FIGURA 9. DIRETÓRIO GERAL PARA UTILIZAÇÃO DO MODELO HIDRODINÂMICO DELFT3D

Na sequência são apresentados os nomes e conteúdos das pastas.

- **CENÁRIOS** nesta pasta estão presentes os diretórios para cada um dos seis cenários simulados com o Delft3D.
- MÓDULOII nesta pasta estão presentes as entradas e saídas simuladas para o Módulo II para os períodos de calibração (1984 a 2005) e validação (2006 a 2015).
- MÓDULOIII nesta pasta estão presentes as entradas e saídas simuladas para o Módulo III para os períodos de calibração (1984 a 2005) e validação (2006 a 2015).
- **Batimetria** arquivo .xyz com dados batimétricos obtidos para a área de estudo e o arquivo .dep, que é a batimetria interpolada para o modelo.
- Contornos arquivo de extensão .bnd com a localização e nomes das condições de contorno.
- **Forçantes** arquivos .bct e .bcc com os nomes dos contornos e dados de vazão líquida e sólida, respectivamente, e arquivo com série temporal de vento (.wnd)
- **Grade** arquivos .grd e .enc constando as informações das grades geradas pelo modelo. Os dois arquivos correspondem a uma mesma grade.
- Linha de Costa arquivo contendo as delimitações do contorno dos corpos de água (.ldb).
- Pontos Secos arquivo com a localização dos pontos secos da grade (.dry).
- **PontosObs** arquivo com a localização dos pontos de observação (.obs).
- Resultados arquivos de saída. Arquivos *com* correspondem a saída gerada pela comunicação entre o modelo hidrodinâmico e o modelo de ondas, *trih*- apresentam as séries temporais de saída em formato de gráficos e o arquivo *trim*- os resultados apresentados em formado de mapa. Cada saída *com*-, *trih*- e *trim* possui dois arquivos associados, de mesmo nome, um .dat e um .def.
- **Rugosidade** arquivo .xyz com dados de rugosidade obtidos para a área de estudo e o arquivo .rgh que corresponde à rugosidade interpolada para o modelo.

- Sedimento arquivo .sed com dados de sedimentos coesivos e não coesivos e o arquivo .mor com informações sobre a morfologia do modelo.
- **Guaiba_Cjacui_250m_arambare.MDF e .fil** os arquivos .mdf e .fil correspondem ao arquivo principal de simulação, onde todas as informações do modelo são reunidas.
- mineração_guaiba.dad informações sobre as áreas de mineração, como o nome dos blocos de mineração, quantidade máxima de sedimentos a ser retirada (m³) e profundidade máxima. Importante: para realizar as simulações, este arquivo deve permanecer na mesma pasta que o arquivo .MDF.
- **mineração_guaiba.pol** poligonos das áreas a serem mineradas. **Importante:** Para realizar as simulações, este arquivo deve permanecer na mesma pasta que o arquivo .MDF.
- **Ondas** arquivo principal para a simulação de ondas. **Importante:** Para realizar as simulações, este arquivo deve permanecer na mesma pasta que o arquivo .MDF.

3.2 IMPLEMENTAÇÃO DO MODELO

A primeira etapa para aplicação do modelo hidrodinâmico e de transporte de sedimentos consiste na implementação do modelo para a área de estudo. Antes de iniciar as atividades deve-se direcionar o programa para o diretório de trabalho, com os dados necessários para a modelagem. Na tela inicial do Delft (FIGURA 10) selecione o diretório desejado clicando em *Select Working Directory*.

Na ferramenta GRID, acesso disponível na tela inicial do Delft3D (FIGURA 10), é possível gerar ou alterar os dados de batimetria, rusogidade e da grade implementada. Ao clicar em GRID, a ferramenta de Grid e Batimetria é aberta (FIGURA 11). Alterações ou a geração de grades devem ser realizadas em RGFGRID e alterações ou a interpolação da batimetria e da rugosidade deve ser realizadas em QUICKIN. Os polígonos de mineração também são criados utilizando a ferramenta QUICKIN.

FIGURA 10. TELA PRINCIPAL DELFT3D

🔯 Delft3D 4.02.03 - [C:/Users	/tabat/Desktop]	-	×
Information	Information and version numbers		
Grid	Grid and bathymetry		
Flow	Hydrodynamics (including morphology)		
Wave	Waves (standalone)		
Part	Particle tracking		
Water Quality	Far-field water quality		
Utilities	Delft3D Utilities		
Exit	Exit Delft3D menu		
	Select working directory		

FIGURA 11. TELA GRID

🔯 Grid and bathymetry - [C:/Users/tabat/Desktop] — 🛛			×	
RGFGRID	Boundary fitted grid generation			
QUICKIN	Data interpolation to computational grid			
DIDO	Grid aggregation program			
Report RGFGRID	View report from grid generation			
Report QUICKIN	View report from data interpolation to c	omputatio	onal grid	
Return	Return to Delft3D menu			
Select working directory				

×

3.3 SIMULAÇÕES

Após a geração da grade e com as informações batimétricas e de rugosidade interpoladas para o domínio do modelo é possível a criação do arquivo principal de simulação (.mdf). Ao retornar a tela inicial clicando em *Return*, os módulos FLOW, WAVE, PART e WATER QUALITY estão disponíveis. A implementação e simulação do modelo hidrodinâmico e de transporte de sedimentos ocorre no módulo FLOW.

A FIGURA 12 apresenta a tela inicial do módulo FLOW. A geração do arquivo principal de simulação, chamado aqui de MDF, é realizada na ferramenta FLOW INPUT. Para inserir a ação de ondas nas simulações hidrodinâmicas o arquivo de ondas é criado em WAVE INPUT. As simulações são iniciadas clicando em START.

Flow input	Create or edit FLOW input file (incl. morphology)
Wave input	Create or edit WAVE input file
Start	Start FLOW simulation (incl. waves/coupling; single domain)
Start DD	Start FLOW simulation (incl. waves/coupling; multiple domains)
RemoteOLV	Remote online visualisation
QUICKPLOT	Postprocessing with QUICKPLOT
Reports	View report files
Batch	Prepare and start FLOW batch job
Tools	Additional tools
Return	Return to Delft3D menu
	Select working directory

FIGURA 12. TELA PRINCIPAL MÓDULO FLOW – DELFT3D

🔯 Hydrodynamics (including morphology) - [.../Users/tabat/De...

Ao clicar em FLOW INPUT, uma nova tela é aberta. Em cada seção disponível em FLOW INPUT, arquivos e informações serão solicitadas a fim de gerar ou alterar o arquivo MDF para então realizar as simulações. O arquivo MDF implementado pode ser aberto em *File – Open*.

A seguir são descritas, de maneira resumida, cada seção da ferramenta FLOW INPUT:

- *Description* descrição da simulação (FIGURA 13).
- *Domain* inseridos os arquivos de grade, batimetria e pontos secos (FIGURA 14).

- *Time Frame* data de início e término da simulação e o passo de tempo.
- *Processes* nesta seção são acionados os processos de transporte de sedimentos (Módulo SED), ondas (Módulo WAVE), ação dos ventos e o processo de mineração (*Dredging and Dumping*) nas simulações dos Cenários (FIGURA 15).
- *Initial Conditions* condições iniciais de nível de água e concentração de sedimentos.
- Boundaries arquivos de condições de contorno .bnd, .bcc e .bct.
- *Physical Parameters* constantes utilizadas, arquivo de rugosidade, dados de viscosidade, informações sobre os tipos de sedimentos, arquivo de morfologia e o arquivo contendo a série temporal de vento (FIGURA 16).
- Numerical Parameters parâmetros numéricos do modelo.
- **Operations** operações adicionais. Para o modelo realizar o processo de *Dredging and Dumping* deve-se indicar o arquivo .dad nesta seção.
- *Monitoring* arquivo com pontos de observação.
- *Additional Parameters* parâmetros adicionais do modelo. Para o modelo realizar o processo de *Dredging and Dumping* deve-se inserir a palavra-chave FILDAD e indicar o nome do arquivo com extensão .dad.
- *Output* informações para armazenamento dos arquivos de saída, como data de início, término e intervalo de armazenamento.

O arquivo de simulação MDF é criado ao clicar em *File* e *Save MDF*. Para as simulações do Módulo II, no qual não foi necessária a implementação do campo de ondas, após a geração do MDF a próxima etapa consiste na simulação, que é iniciada no botão START na tela inicial do módulo FLOW.

Para as simulações do Módulo III é necessária a elaboração do arquivo de simulação do campo de ondas em WAVE INPUT. Como a simulação hidrodinâmica acontece simultânea à simulação das ondas (acionado o campo *Online Delft3D-WAVE* no MDF, FIGURA 15) ao informar qual arquivo MDF o campo de ondas deve estar relacionado (FIGURA 17). As únicas informações necessárias no arquivo de ondas são a grade e batimetria do modelo (mesma utilizada no MDF) na seção *Grids*, a condição de contorno do campo de ondas na seção *Boundaries* e as informações do campo de ventos, gerador das ondas, na seção *Physical Parameters*. A condição de contorno do campo de ondas coincide com a fronteira do MDF em que ocorre a entrada de ondas. Ao clicar em START, os arquivos MDF e de ondas serão solicitados e a simulação terá início.

Description	Enter a number of descriptive text lines (Max. 10)		
Domain	Validação Modelo Lago Guaíba		
Time frame			
Processes			
Initial conditions			
Boundaries			
Physical parameters			
Numerical parameters			
Operations			
Monitoring			
Additional parameters			
Output			

FIGURA 13. TELA INICIAL ARQUIVO DE SIMULAÇÃO (.mdf)

FIGURA 14. TELA DOMAIN

File Table View Help Description	Grid Bathymetry Dry point	s Thin dams	
Domain Time frame Processes	Open grid Open grid enclosure	File :\Grade\lago_Cjacui_250m.grd File :\Grade\lago_Cjacui_250m.enc	
Initial conditions Boundaries	Co-ordinate system: Grid points in M-direction:	Cartesian 55	
Physical parameters Numerical parameters	Grid points in N-direction: Latitude: Orientation:	106 -33 [dec. deg] 0 [dec. deg]	
Operations Monitoring	Number of layers:	1	
Additional parameters Output			

FIGURA 15. TELA PROCESSES

Domain Salinity Time frame Temperature Processes Pollutants and tracers Initial conditions Sediments Boundaries Sediments Physical parameters VWind Secondary flow Operations VWave Operations Vave Monitoring Man-made Additional parameters Dredging and dumping	Description	Constituents		
Time frame Processes Initial conditions Boundaries Physical Physical parameters Vind Secondary flow Varee Operations Monitoring Additional parameters Output	Domain	Salinity		
Processes <pre> Pollutants and tracers Edit </pre> Initial conditions Sediments Edit Boundaries Physical Physical Physical parameters Wind Secondary flow Numerical parameters Wave Online Delft3D-WAVE Monitoring Man-made Dredging and dumping Output	Time frame	Temperature		
Initial conditions Image: Sediments Edit Boundaries Physical Physical parameters Image: Wind Secondary flow Numerical parameters Image: Wind Secondary flow Operations Image: Wave Image: Wave Monitoring Man-made Image: Wand Image: Wand Additional parameters Image: Wand Image: Wand Image: Wand Output Image: Wand Image: Wand Image: Wand Image: Wand	Processes	Pollutants and tracers Edit		
Boundaries Physical Physical parameters If Wind Secondary flow Numerical parameters If Wave Operations If Online Delft3D-WAVE Monitoring Man-made Additional parameters If Dredging and dumping	Initial conditions	✓ Sediments Edit		
Physical parameters Image: Wind Secondary flow Numerical parameters Image: Wind Secondary flow Operations Image: Wave Monitoring Image: Wand Additional parameters Image: Dredging and dumping Output Image: Dredging and dumping	Boundaries	Physical		
Numerical parameters Image: Wave Operations Image: Wave Monitoring Image: Wave Additional parameters Image: Wave Output Image: Wave	Physical parameters	✓ Wind		
Operations Image: Constraint of the second	Numerical parameters	I Wave		
Monitoring Man-made Additional parameters Dredging and dumping Output 	Operations	☑ Online Delft3D-WAVE		
Additional parameters Output	Monitoring	Man-made		
Output	Additional parameters	Dredging and dumping		
	Output			

FIGURA 16. TELA PHYSICAL PARAMETERS

Delft3D-FLOW - C:\Users\tabat\l File Table View Help	Desktop\Modelo_Guaiba\Guaiba_C	jacui_250m_arambare.mdf *	_	×
Description	Constants Roughness	Viscosity Sediment Morphol	ogy Wind	
Domain	Hydrodynamic consta	nts		
Time frame	Gravity	9.81 [m/s2]		
Processes	Water density	1000 [kg/m3]		
Initial conditions	Air density	1 [kg/m3]		
Boundaries	Wind drag coefficients Breaknoints	Coefficient Wind sne	ed	
Physical parameters	A	0.00063 [·] 0	[m/s]	
Numerical parameters	В	0.00723 [·] 100	[m/s]	
Operations	С	0.00723 [·] 100	[m/s]	
Monitoring				
Additional parameters				
Output				
		Physic	al parameters - Consta	ints

Delft3D-WAVE - C:\Users\tabat\	Desktop\Modelo_Guaiba\ondas.mdw —		×
e View Help			
Description			
Hydrodynamics	✓ Run WAVE together with FLOW		
Grids	Select FLOW file		
Time frame	File:\Modelo_Guaiba\Guaiba_Cjacui_250m_arambare.mdf		
Boundaries			
Obstacles			
Physical parameters			
Numerical parameters			
Output curves			
Output parameters			
Additional parameters			
		Main M	odulr

FIGURA 17. TELA DO ARQUIVO DE SIMULAÇÃO CAMPOS DE ONDAS

3.4 ESTRUTURA DOS ARQUIVOS DE SAÍDAS

A visualização dos resultados é realizada pela ferramenta QUICKPLOT de pós-processamento do Delft3D. O caminho para QUICKPLOT acontece por meio do módulo FLOW na tela principal do Delft3D (FIGURA 10). Na primeira tela do módulo FLOW (FIGURA 12) já esta disponível o acesso a ferramenta de pós-processamento.

Ao clicar em QUICKPLOT, uma segunda tela é aberta (FIGURA 18). Ao selecionar a pasta amarela (canto superior esquerdo) é possível procurar e selecionar um dos arquivos de saída, que então será aberto pelo QUICKPLOT.

A FIGURA 19 apresenta a ferramenta de pós-processamento com as funções ativadas após seleção do arquivo de saída. Neste momento, é possível observar os resultados para diferentes variáveis (FIGURA 20), para um dia ou período especifico, e gerar imagens ou filmes mostrando as variações durante o tempo. Na coluna da direita podem ser selecionados limites automáticos ou manuais, diferentes texturas de imagens, cores e realizar a exportação dos resultados de uma determinada variável, para extensões compativeis em programas como o Excel e o Matlab.

File Mac	ro Window Help	
ê 🔁 🛍	' 🖦 🛍 🗔 🗣 📭 🕨 🚔 🏙	
	V.	7
Domain		
	~	
Subfield	~	
Time Step	_ All	
Time Zone	A	
N/A		
Show T	līmes 🗸 🗸	
M range ar	nd N range 🗸 K range 🗸	
М	All	
Ν	All	
К	All	
	Define Var. Add to Plot Quick View	

FIGURA 18. TELA QUICKPLOT

FIGURA 19. TELA QUICKPLOT COM ARQUIVO DE SAÍDA

📣 Delft3D	-QUICKPL	от				-	_	>	<
File Ma	cro Win	dow He	elp						
ළි 🖻 🗂	ን 🚘 🛛 🖉) 🗖 🖣	🖣 🖷 🕨	📙 🛱	3				
\trim-Gu	aiba_Cjacuį	_250m_ara	ambare.dat		~	Axes Type			2
Domain					\sim	X-Y		\sim	
e adiment 1					~	Presentatio	п Туре		
Sedimenti					-	continuous	shades	\sim	
Subfield					\sim	Extend t	to Domain Ec	dge	
Time Step		898			2306	Data Units	As in file	\sim	
		16-Nov-2	009 12:00:00		^	kg/m^3			
		18-Nov-2 19-Nov-2	009 02:00:00			Operator	none	\sim	
Show '	Times	21-Nov-2 22-Nov-2	009 06:00:00 009 20:00:00		,	Colour Limit	s		ſ
		D4 Nov D	000 10-00-00			automatic		\sim	
M range a	nd N range	\sim	K range		\sim	Symmet	ric Limits		
М		1			55	Colour Map			
N		1			106	jet		\sim	
К	All	1			1	Draw C	olourbar		
	Def	ine Var	Add to Plot	Quick	View	Hori	izontal		
	Der	no rui.	100101101	Gener		Clipping Va	lues		

Delft3D-QUICKPLOT		- [×
ile Macro Window Help			
ኛ 🖻 🗂 🌆 🖉 │ 🖂 ● 📭 ■ ► │ 🖁	₿		
\trim-Guaiba_Cjacui_250m_arambare.dat	~ Axes	Туре	
Domain	X-Y		\sim
	Prese	ntation Type	
vater level	contin	uous shades	\sim
hydrodynamic grid		tend to Domain	Edge
grid	Data I	Inits An in G	
open boundaries	Data c	As in th	e ~
closed boundaries	m		
thin dams	Opera	tor none	~
temporarily inactive water level points		none	-
temporarily inactive velocity points	Colour	r Limits	
parallel partition numbers	autom	natic	~
			_
water level (when dry: bed level)		mmetric Limits	
water level	Colour	г Мар	
water depth	1.4		
depth averaged velocity	Jet		~
staggered depth averaged velocities	Dra	aw Colourbar	
staggered horizontal velocity		Horizontal	
filtered depth averaged velocity		_ nonzontai	
d.a. velocity fluctuations	Clippin	ig Values	
troude number			
nead	¥		

FIGURA 20. EXEMPLO DE VARIÁVEIS DE SAÍDA DISPONÍVEIS